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ABSTRACT:  

This paper discusses the optimum designing of K-out-of-n: G redundant system 

in the presence of ‘intrinsic’ failures defining a long run expected cost per unit time 

measure namely System Average Cost Rate. This research work develops a new modified   

refined optimum redundancy policy parallel to Nakagawa [2]. The present model 

provides a cost  effective optimum redundancy (n *) as an improvement to Nakagawa [2] 

model under the influence of failure rate and time of operation which is obvious in Reliability 

analysis. The results are tabulated and graphs are presented for the model for comparison. 
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1. INTRODUCTION: 

     Redundancy often used to achieve a required reliability for a system with unreliable 

parts. A k-out-of-n structure is optimal among redundant structures under cer ta in  

conditions. Several papers have treated the problem of optimum   redundancy.  Rau   

and B e n -Dov   studied t h e  problem o f  determining k  maximizing the reliability for a 

given n.   Nakagawa [2] studied the problems of determining optimal numbers of 

redundant units which minimize the mean cost rate. In these and other models, only 

random failures (intrinsic) of components result in system failure. 

   

 This paper discusses refined o p t i m u m  policy of k-out-of-n 

redundant system parallel to Nakagawa [2] model minimizing System Average cost rate.  

The optimal number o f  redundant units is shown to be unique. This paper establishes the 

results that the present optimum redundancy is highly cost effective while retaining the 

improvement of Reliability compared to Nakagawa [2] model. 

 

2.  ASSUMPTIONS: 

1.   The components in t he system are subjected to fail independently & randomly. 

2.   Failures times of all components obey exponential probability law. 

3.   Individual failures occur at a constant rate. 

4.   Replacement times are negligible. 

5.   The planning horizon is infinite. 
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3. NOTATION: 

c1       :  Acquisition cost of one unit 

c2      :  Additional cost of the system which is replaced at failure. 

c2
1   

 :   c2 / c1 

n        :  Number of redundant units 

*      :  Implies the optimal value 

k       :  Minimum number of components required for successful operation of      

                      the system 

t        :  Time  factor ( In units of time Min/Hrs/ Days) 

p        :  Module (component)  reliability (q = 1- p) 

            :  Constant failure rate of each component. (No. of failures per unit time)                                                                                     
n

*
M                   :  Optimal redundancy for proposed Modified model 

n
*
N                    :  Optimal redundancy for Nakagawa model 

MTTF        :  Mean time to failure of the system 

Sn               :  Mean time to failure (MTTF) of the system  

R (n,k,t)     :  Reliability of the system 

C (n,, t)    :  System average cost rate. 

   

4. MODEL: 

     The k-out-of-n: G redundant system where minimum of k units should work for the 

successful operation of system where n is the redundant number of components and k < n. 

The components in the systems are subject to fail individually with failure rate  .   

     In this section alternative optimum redundancy is developed using the cost function. 

i.e., System average cost rate unlike Nakagawa [2].  

The System average cost rate is defined as 

C (n, , t)  = E(C) / E (Y)                                                                      

where, system average cost is  

 E(C) = c1n + c2 (1– Rs (k,n,t))                              (see Pham [5] )                           (1) 

                                  n             

and    Rs (k,n,t) =         n (e
-

 
t
) 

i 
  (1- e

- 
 
t
) 

n-i                                                                     
(2) 

                                i=k          i                            

 

and  E(Y) = mean time to system failure (MTTF),     

                                          n 

Sn =  Rs(k,n,t) dt = (1/ )      (1/ i)                                                                         (3)   
      o                                   i=k      

Therefore the System average cost rate can be expressed as  

C (n, ,t) = (c1n + c2(1– Rs (k,n,t))) / Sn                                 (see Nakagawa [2])              (4)                                        

Further, Sn   obeys, 

        (i)  (Sn+1 – Sn) decreases in n,    and   lim   {Sn+1 – Sn} = 0 

                                                                    n  

       (ii)  Sn+1 = 1 / ( (n+1)) + Sn.  

A necessary condition for n
*
M     to minimize C (n, , t) as given in (4) is 

C (n+1)  C (n) and  C (n) < C (n-1)                                                                     (5)    

i.e., C (n+1) – C (n)  0 
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{{[c1 (n+1) + c2 (1– R(k,n+1,t))] / Sn+1} – { [c1 (n) + c2 (1– R(k,n,t))] / Sn }}  0 

Further it reduces to  

c1 Sn – n c1 ( Sn+1 – Sn)   c2{( Sn+1 – Sn )   – (R(k,n,t)  Sn+1 – Sn R(k,n+1,t) )}       (6) 
The above equation can be expressed as   

                n                                  n+1            n 

c1 (1/1)   (1/ i)   – n c1 (1/1) (  (1/ i)   –   (1/ i))     

               i = k                             i = k           i = k                      
                 n+1        n                                        n+1                                    n 

c2{((1/1)( (1/ i) – (1/ i))) – (R(k,n,t) (1/1)  (1/ i) – R(k,n+1,t) (1/1) (1/ i))}                                

                 i= k      i= k                                     i= k                                   i= k 

            n                      

  c1    (1/ i)   – n c1 (1/(n+1))     
           i = k                                     

                                       

                                        n+1                            n 

c2  {(1/(n+1))  – (R(k,n,t)  (1/ i) – R(k,n+1,t)  (1/ i))}                                

                                        i= k                          i= k 

Therefore, 

  n+1                                                     n 

( (1/i) –1)/{(1/(n+1))(1– (R(k,n,t)) + (1/i) (R(k,n+1,t) – R(k,n,t))}     c2 /c1 
 i = k                                                    i = k  

 

Therefore,  Z (n) c2 / c1  = c2
1   

                                                                             (7) 

                       n+1                                                    n 

where, Z(n) =((1/i) –1)/{(1/(n+1))(1–(R(k,n,t)) + (1/i) ( R(k,n+1,t) –R(k,n,t))} 
                       i= k                                                   i= k  

Thus optimal redundancy n
*
M     depends on k, c2

1
  

Thus (5) is equivalent to Z (n)  c2
1   

and  Z (n – 1) < c2
1
                                      (8) 

From the properties (i)   and (ii)  [Z (n+1) – Z (n)] > 0, 

Hence Z (n) is increasing in n, and   lim   Z (n)    

                                                          n  

Therefore, if Z (k) < c2
1
, the optimal redundancy will be n*M which is the smallest n such that    

Z (n)  c2
1
, otherwise, n*M  = k. 

 

5. EXAMPLE AND DISCUSSION: 

     To illustrate the results of optimum redundancy of the above model in detail, an example   

is considered and the results were derived for various values of failure rates  = 0.001, 0.01, 

0.05 and 0.5 and time t = 2, 15, 30 with cost ratio c2
1
 (= c2 / c1) = 50, 100, 1000.  

     The detailed sketch of values is presented in tables 5.1 to 5.3.  For further illustration of 

results graphs were plotted for failure rate () v/s optimal redundancy (n*) and seen in figures 

5.1 to 5.3.  It is observed from the figures that as the mission time and the value of k 

increases the optimal redundancy (n*) also increase (see column five of tables 5.1 to 5.3 and 

figures 5.1 to 5.3). Further it is interesting to note that the modified model suggests a cost 

effective   redundancy when compared to Nakagawa model [2].  
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     In modified model it is observed that when failure rate is more the model suggests more 

number of redundant units compared to smaller units of failure rate (see columns 5 of tables 

5.1, 5.2, 5.3 and figures 5.1 to 5.3). This seems to be more realistic, unlike the Nakagawa 

model [2]. For various values of failure rate the Nakagawa model [2] suggests same optimal 

redundant units (see column 4 of tables 5.1, 5.2, 5.3 and figures 5.1 to 5.3).  

     Naturally the failure rate and time have influence on the system such a way that as the 

failure rate and time increase, the redundancy also increases. But in case of Nakagawa [2] 

model the failure rate and operational time (t) have no influence on redundancy (see lower 

and upper rows of tables 5.1 to 5.3 and figures 5.1 to 5.3).  However in the   proposed   model 

there is a change in redundancy for change of failure rate () and mission time (t). Thus the 

proposed modified model is an improved and modified version when compared to Nakagawa 

model [2] in terms of real applications.  

Table 5.1:  Optimum values of redundancy for failure rate  = 0.01 and with variation of time. 

Time units 

operational 

(t) 

k 
c2

1
= c2 / 

c1 

Optimal redundancy 

Nakagawa model (n
*

N) 
Modified model 

(n
*

M) 

 

2 

 

 

 

 

3 

50 32 6 

100 50 6 

1000 271 6 

4 

50 36 9 

100 56 9 

1000 292 9 

5 

50 40 11 

100 61 11 

1000 309 11 

15 

3 

50 32 7 

100 50 7 

1000 271 8 

4 

50 36 9 

100 56 9 

1000 292 10 

5 

50 40 11 

100 61 11 

1000 309 12 

30 

3 

50 32 8 

100 50 9 

1000 271 11 

4 

50 36 10 

100 56 11 

1000 292 13 

5 

50 40 13 

100 61 13 

1000 309 15 
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Table 5.2: Optimum values of redundancy for failure rate  = 0.05 and with 

variation of time. 

Time units 

operational 

(t) 

k c2
1
= c2/ c1 

Optimal redundancy 

Nakagawa model 

(n
*

N) 

Modified model 

(n
*

M) 

 

2 

 

 

 

 

3 

50 32 6 

100 50 7 

1000 271 7 

4 

50 36 9 

100 56 9 

1000 292 9 

5 

50 40 11 

100 61 11 

1000 309 11 

15 

3 

50 32 13 

100 50 15 

1000 271 19 

4 

50 36 16 

100 56 18 

1000 292 22 

5 

50 40 19 

100 61 21 

1000 309 26 

30 

3 

50 32 25 

100 50 29 

1000 271 40 

4 

50 36 31 

100 56 35 

1000 292 48 

5 

50 40 37 

100 61 41 

1000 309 54 
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Table 5.3: Optimum values of redundancy for failure rate  = 0.5 and with 

variation of time. 

Time units 

operational 

(t) 

k c2
1
= c2 / c1 

Optimal redundancy 

Nakagawa model 

(n
*

N) 

Modified model 

(n
*

M) 

 

2 

 

 

 

 

3 

50 32 17 

100 50 19 

1000 271 25 

4 

50 36 21 

100 56 23 

1000 292 29 

5 

50 40 24 

100 61 26 

1000 309 33 

15 

3 

50 32 32 

100 50 50 

1000 271 271 

4 

50 36 36 

100 56 56 

1000 292 292 

5 

50 40 40 

100 61 61 

1000 309 309 

30 

3 

50 32 32 

100 50 50 

1000 271 271 

4 

50 36 36 

100 56 56 

1000 292 292 

5 

50 40 40 

100 61 61 

1000 309 309 
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k = 3 k = 4 k = 5 

 

Fig. 5.1: Optimal Redundancy (n*) v/s Failure rate () for c2
1 
= 50 and t = 2, 15, 30 
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k = 3 k = 4 k = 5 

 

Fig. 5.2: Optimal Redundancy (n*) v/s Failure rate () for c2
1 
= 100 and t = 2, 15, 30 
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k = 3 k = 4 k = 5 

 

Fig. 5.3: Optimal Redundancy (n*) v/s Failure rate () for c2
1 
= 1000 and t = 2, 15, 30 
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